
Keyboard tap to configure an Amiga 500

jmA500 ¡jm@metweb.de¿

February 16, 2018

1 Description

This little piece of hardware is used to provide some means for configuring an Amiga
500 with the keyboard. This is to replace at least some of the small switches that are
commonly used to configure the extensions in an Amiga. The circuit listens to the keys
pressed on the Amiga keyboard and then adjusts some of its output pins. These pins
connect to jumper headers on the extension boards and hence provide some means to
configure these extensions without opening the case or drilling holes into it.

ISP
GND
5V
RXD
TXD

Keyboard

Pin 1

Pin 1

Pin 1

Top: JP5
Bottom: JP6

Note however, that this project is not for beginners. If you have other extensions than I
have, you will likely have to adapt the firmware to your needs. Also, you have to figure
out whether your extensions are configurable by means of an external MCU, that is if

1

is suffices to drive a signal statically high or low. Switching a dynamic signal is not
possible (without extra hardware)1

In any case you need a possibility to program the AtTiny4313 micro-controller with
an in system programmer (ISP). These are cheaply available and connect to USB or
parallel port. A lot of information regarding this micro-controller can be obtained on
the excellent websites http://www.avrfreaks.net/ or http://www.mikrocontroller.
net/ (German).

In addition, if you are not running a Linux machine similar to mine there might be
some extra difficulties adapting the code to your build environment. In particular I
am not using AVR studio and this distribution does not include any project file for it.
However, pre-built firmware images are included, if you are happy with the firmware out
of the box.

2 Disclaimer

I am not responsible for any damages done by this device, and I do not guarantee that
it will work at all. Only connect this to your precious Amiga, if you are sure about what
it does, how it works, and whether the firmware is what I claim it to be.

3 Acknowledgments

The idea to this project was born during a discussion in the a1k.org/forum and was
suggested by Paradroid. However, if I did not have all the great hardware extensions
created by the community I would not have had any reason to start the project. Thanks
also to the members of the a1k.org forum encouraging me to continue this project.

4 License

All parts of this project are free to use in non-commercial projects. The firmware is
licensed under terms of the GPL 2. Please quote this document in any derived work.
See the file COPYRIGHT in src/attiny4313 for additional information, in particular
the reference to Peter Fleury who provided a neat UART library for the Atmel MCUs.

5 Hardware

The hardware is plain and simple, an AtTiny4313 (or 2313) in minimal configuration
with a few pin headers to connect the configuration jumpers and an ISP Programmer.
In addition, the RxD and TxD pins are accessible on additional pins.

1I have seen some kickstart switches that use a switch to route a signal to either of the two ROMs.

2

http://www.avrfreaks.net/
http://www.mikrocontroller.net/
http://www.mikrocontroller.net/
a1k.org/forum

Config 0

Config 1

B
uc

hs
en

le
is

te
 fü

r M
ai

nb
oa

rd
S

tif
tle

is
te

 fü
r K

ey
bo

ar
d

KB_A500
ATTINY2313

100n10µ

GND GND

V
C

C V
C

C

100n
10

k

V
C

C

GND

V
C

C

GND

KB_A500"

V
C

C

GND

V
C

C

GND

KBCLK1

KBDATA2

KBRST3

VCC4

GND6

POWER_LED7

FLOPPY_LED8

J1G$1

IC1

(MOSI/DI/SDA)PB5 17

(OC1B)PB4 16

(OC1A)PB3 15

(OC0A)PB2 14

(AIN1)PB1 13

(AIN0)PB0 12

(RXD)PD0 2

(TXD)PD1 3

(INT0)PD2 6

(INT1)PD3 7

(T0)PD4 8

(OC0B/T1)PD5 9

(ICPI)PD6 11

(RESET)PA21

GND10

VCC20

(USCK/SCL/SCK)PB7 19

(MISO/DO)PB6 18

(XTAL1)PA05

(XTAL1)PA14

C2C3

C1
R

1
J3

P$1
P$2
P$3
P$4

KBCLK1

KBDATA2

KBRST3

VCC4

GND6

POWER_LED7

FLOPPY_LED8

J4G$1M
IS

O
1

V
C

C
2

S
C

K
3

M
O

S
I

4

R
E

S
E

T
5

G
N

D
6

J6
P$1
P$2
P$3
P$4

J5
P$1
P$2
P$3
P$4

RXD

RXD

TXD

TXD

POWER_LED

POWER_LED

FLOPPY_LED

FLOPPY_LED

FLOPPY_LED

KBCLK

KBCLK

KBCLK

KBDATA

KBDATA

KBDATA

KBRESET

KBRESET

KBRESET

ISP

There is a board layout done in such a way that the little PCB can be directly fitted on
the keyboard connector on the mainboard of an Amiga 500(+).

However, the whole circuit is so simple that you might consider building it without a
PCB, or you might use an Ardiuno or something similar.

5.1 Part list

IC1 AtTiny 4313 SO or AtTiny 2313 SO

C1,C2 100n SMD 0805

C3 10µ SMD 1206

R1 10k SMD 0805

J1 1x8 socket strip 180◦ 2.54

J2 2x3 pinheader 180◦ 2.54

J3 1x4 pinheader 180◦ 2.54

J4 1x8 pinheader 90◦ 2.54

J5,J6 2x4 pinheader 90◦ 2.54

For future extensions I suggest using a 4313 with 4k flash and 256 bytes of RAM if you
can get one. The firmware distributed along with this file does not fit the 2313 if the
UART functions are enabled. On the other hand, you may or may not find them useful.
Note that I did not test the board with a 2313A although that might work without
changing the code.

3

5.2 Pin Configuration

5.2.1 J1: Connects to A500 mainboard

1 KBCLK

2 KBDATA

3 KBRESET

4 VCC

5

6 GND

7 POWER LED

8 FLOPPY LED

5.2.2 J2: ISP

This is to connect an ISP programmer. The pin-out corresponds to Atmel 6-pin ISP
connector. Please make sure that the programmer does not power the MCU
when connected to the A500 mainboard.

1 MISO

2 VCC

3 SCK

4 MOSI

5 RESET

6 GND

5.2.3 J3: Serial connector

This is a serial connection with 5V logic levels. Names are from the perspective of the
MCU, so you have to connect the TxD of your computer to the RxD on the PCB.

1 GND

2 VCC

3 RxD

4 TxD

The firmware will output some status messages here, and listens to commands via a
small parser. Have a look at the software how to use it (or send the string help to see
a small help message).

5.2.4 J4: Connect your keyboard here

Same as J1.

4

5.3 J5, J6: Connectors for configuration jumpers

These connectors provide 8 pins to configure the hardware. Everything that happens
on these pins depends on the firmware. The software provided with this documentation
emulates open collector outputs, ie. it will either pull pins low or let them float (configure
as inputs) but never pull them high.

This version of the firmware is used to configure generic devices. The PCB provides
eight independent outputs that can be connected to various jumpers. You can configure
my 1.8/2MB Ranger memory extension [?], a Kickflash [?, ?] and the 68010@14MHz
Turbo card by Matze [?] or any other device that has jumpers that can be activated by
pulling them low. This includes any standard 512k memory extension. The Pins are
labeled as follows:

J5 1 C1

2 C2

3 C2

4 C4

J6 1 C5

2 C6

3 C7

4 C8

Note 1: If you want to control a standard 512k expansion, connect one of the config pins
instead of the switch. The switch connector on such a memory expansion has
one pin which is connedted to ground, the other one is pulled high. Connect to
the pin which is pulled high.

6 Firmware

The firmware for the Atmel is written in C and compiles with avr-gcc 4.8.2 but may or
may not compile with different versions although I tried to be as compatible as possible.
The directory firmware contains precompiled flash and eeprom images in Hex-format
for the AtTiny 2313 and 4313. For both MCUs the fuses setting is

LFUSE = 0xD4, HFUSE = 0xDB, EFUSE = 0xFF.

Make sure to program both the flash memory with the corresponding .hex file and the
eeprom memory with the .eep file. Never attempt to flash the MCU while plugged
into a running Amiga 500, since it will switch configuration when finished programming.
This could damage your Amiga.

The Makefile provided in the src directory should do the job by simply running make.
If compiling for an AtTiny2313 you must adjust the MCU variable in the Makefile to
read MCU = attiny2313. Also flash is too tight to use UART debugging. To disable
it, open main.c and comment out the line #define UART_DEBUG 1. If you want to use

5

the UART features, us an AtTiny4313. If you happen to have a USBasp ISP program-
mer [?] you can program the MCU by simply running make fuses and make program.
The Makefile supports programming with avrdude, the programmer is selected with the
variable AVRDUDE_PROG.

The source code should be mostly self explanatory2, although small code has been
preferred to readable code in some places. The crucial global variable is conf. There
are two bytes, current and next. Each bit in those variables corresponds to one config
pin. A one in these bits results in pulling the corresponding pin low. The main
loop checks whether one of the F-keys is pressed before the Help-key gets pressed three
times and changed the next configuration accordingly. If it detects a keyboard reset the
new configuration gets written to the pins and is stored in the eeprom.

7 Usage

This is the selections available if the configurator is connected as described in section 5.3
and programmed with the generic firmware. The keys F1-F8 are used to switch the
configuration pins as follows:

F1 set C1 Shift+F1 clear C1

F2 set C2 Shift+F2 clear C2

F3 set C3 Shift+F3 clear C3

F4 set C4 Shift+F4 clear C4

F5 set C5 Shift+F5 clear C5

F6 set C6 Shift+F6 clear C6

F7 set C7 Shift+F7 clear C7

F8 set C8 Shift+F8 clear C8

To change the configuration proceed as follows:

1. Push Fx or Shift-Fx if you intend to enable (resp. disable) configuration pin x.

2. Hit the Help-key three times. This changes the next configuration that gets acti-
vated but does not yet switch the configuration pins.

3. You can repeat steps 1 and 2 to change further pins.

4. To activate the configuration perform a keyboard reset. This also stores the new
configuration setting to eeprom so that it loads on the next power on.

If you accidentally select a configuration that does not run and is screwed in such
a way that the keyboard is not initialized, you can do a keyboard reset for at least 6
seconds to load the hopefully save configuration where all pins are disabled. This fail-safe
configuration is defined by the macro CONFIG_DEFAULT in the file ee_helper.h.

2An obviously biased judgment YMMV.

6

References

[1] Kickflash Manual. http://www.amigawiki.de/doku.php?id=de:projects:

kickflash_a500.

[2] Kickflash Thread. http://www.a1k.org/forum/showthread.php?t=38329.

[3] Trapdoor extension Thread. http://www.a1k.org/forum/showthread.php?p=

751285.

[4] Turbokarte von Matze. http://www.a1k.org/forum/showthread.php?t=33003.

[5] Usbasp. http://www.fischl.de/usbasp/.

7

http://www.amigawiki.de/doku.php?id=de:projects:kickflash_a500
http://www.amigawiki.de/doku.php?id=de:projects:kickflash_a500
http://www.a1k.org/forum/showthread.php?t=38329
http://www.a1k.org/forum/showthread.php?p=751285
http://www.a1k.org/forum/showthread.php?p=751285
http://www.a1k.org/forum/showthread.php?t=33003
http://www.fischl.de/usbasp/

	Description
	Disclaimer
	Acknowledgments
	License
	Hardware
	Part list
	Pin Configuration
	J1: Connects to A500 mainboard
	J2: ISP
	J3: Serial connector
	J4: Connect your keyboard here

	J5, J6: Connectors for configuration jumpers

	Firmware
	Usage

